
 

 

 

  

Abstract—This paper presents a machine learning approach to the 

efficient vehicle power management and an intelligent power 

controller (IPC) that applies the learnt knowledge about the optimal 

power control parameters specific to road types and traffic 

congestion levels to online vehicle power control. The IPC uses a 

neural network for online prediction of roadway types and traffic 

congestion levels. The IPC and the prediction model have been 

implemented in a conventional (non-hybrid) vehicle model for 

online vehicle power control in a simulation program.  The benefits 

of the IPC combined with the predicted drive cycle are 

demonstrated through simulation. Experiment results show that the 

IPC gives close to optimal performances. 

I. INTRODUCTION 

EHICLE power management has been an active 

research area in the past decade, and has intensified 

recently by the emergence of hybrid electric vehicle 

technologies. Most of these approaches were developed 

based on mathematical models or human expertise, and 

knowledge derived from simulation data.  The application of 

optimal control theory to power distribution and 

management has been the most popular approach, which 

includes linear programming [1], optimal control [2], and, 

especially, dynamic programming (DP) [3, 4, 5].  In general, 

these techniques do not offer an on-line solution, because 

they assume that the future driving cycle is entirely known.  

However these results can be used as a benchmark for the 

performance of power control strategies.  More recently 

various techniques for deriving effective online control rules 

based on the results generated by offline DP and Quadratic 

Programming (QP) [3, 6].  However few attempts have been 

made to explore the optimization of vehicle power 

management with the knowledge of road type and traffic 

congestions, which is the main contribution of this paper.  A 

comprehensive overview of intelligent systems approaches 

for vehicle power management can be found in [7]. 

Driving patterns exhibited in a real world driver are the 

product of the instantaneous decisions of the driver to cope 

with the (physical) driving environment.  Research has 
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shown that driving style and environment have strong 

influence over fuel consumption and emissions [8,9].  

Specifically road type and traffic conditions, driving trend, 

driving style, and vehicle operation modes have various 

degrees of impacts on vehicle fuel consumptions. However 

most of the existing vehicle power control approaches do not 

incorporate the knowledge about driving patterns into their 

vehicle power management strategies.   

Our research focuses on developing a machine learning 

strategy to learn about the optimal control parameters for all 

11 standard facility specific drive cycles proposed in [10] 

and an intelligent online power controller (IPC) that applies 

the learnt optimal control parameters to online vehicle power 

management based on a neural network system trained to 

predict the current road type and traffic congestion level.   

This paper is organized as follows.  Section II introduces 

the intelligent vehicle power management and machine 

learning algorithms.  Section III introduces the online control 

strategy and the performances of IPC.  Section IV is the 

conclusion. 

II. INTELLIGENT POWER CONTROL IN A CONVENTIONAL 

VEHICLE SYSTEM 

A. A conventional vehicle model for fuel consumption 

optimization 

Figure 1 shows the interaction between the proposed 

Intelligent Power Controller (IPC) and a conventional 

vehicle system. During a drive cycle, the IPC calls the neural 

network, NN_RT&TC, to predict the current road type and 

traffic congestion (RT&TC) level. The IPC uses the output, 

R[i], 1 11≤≤ i , from NN_RT&TC to retrieve the 

knowledge about the optimal power control parameters 

applicable to the predicted road type and traffic congestion 

level, applies the knowledge and the current vehicle state, 

which is represented by the current vehicle speed v(t), driver 

power demand Pd(t), electrical load Pl(t) and SOC of the 

battery, to calculating the electric power setpoint, Ps, for the 

battery controller, and the setpoint, Pe, for the alternator, a 

feed forward torque compensation to the engine controller.  

Ps represents the power actually to be charged (Ps > 0) or 

discharged (Ps < 0) from the battery and is set by the IPC 

with the aim of minimizing fuel consumption. The optimal 

engine power Peng, calculated based optimal setpoint of Ps, is 

used to find the optimal feed forward torque compensation 

through the engine fuel efficiency map.  The functional 

relationship between Peng and Ps are shown as follows: 
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Peng = Pd + G(Pe, ωe), Pe = Pl + Pb , Pb = 

 Ps + P_Lossbat (Ps, Es, T), 

where G(Pe, ωe) is the efficiency map of converting mechanical to 

electrical power in the vehicle system.  P_Lossbat, representing the 

power losses in the battery, is a function of Ps, Es (energy level in 

the battery), and T(the temperature).  To simplify the problem, we 

ignore the influence of Es and T, and model the power loss, 

P_Lossbat, during charging and discharging as follows: 
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Figure 1. Intelligent power controller in a vehicle system. 

TABLE I. 

STATISTICS OF 11 FACILITY SPECIFIC DRIVING CYCLES [10] 

Drive Cycles Vavg (mph) Vmax (mph) Amax (mph/s
2
) Length (sec) 

Freeway LOS A: R[1] 67.79 79.52 2.3 399 

Freeway LOS B: R[2] 66.91 78.34 2.9 366 

Freeway LOS C: R[3] 66.54 78.74 3.4 448 

Freeway LOS D: R[4] 65.25 77.56 2.9 433 

Freeway LOS E: R[5] 57.2 74.43 4.0 471 

Freeway LOS F: R[6] 32.63 63.85 4.0 536 

Freeway Ramps: R[7] 34.6 60.2 5.7 266 

Arterials LOS A-B: R[8] 24.8 58.9 5.0 737 

Arterials LOS C-D: R[9] 19.2 49.5 5.7 629 

Arterials LOS E-F: R[10] 11.6 39.9 5.8 504 

Local Roadways: R[11] 12.9 38.3 3.7 525 

 

 
Figure 2: Machine learning processes. 
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The fuel optimization problem is modeled as a multistep 

decision problem using a quadratic function of  Ps 
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where sP  contains the optimal setting of Ps(k), for k = 0, …, 

n, n is the number of time intervals in a given driving cycle.  

The quadratic function of the fuel rate is solved by the 

following computational steps. 

step 1: Minimizing the following Lagrange function of with 

respect to Ps and λ: 
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Step 2: Taking the partial derivatives of Lagrange function L 

with respect to Ps (k), k=1,…,N and λ respectively, and 

setting the equations to 0, we have 

optimal battery setting: 

Ps(k) = 
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Step 3: Using the PI-type controller such that the Es value of 

the battery should be kept near a nominal value of the initial 

Es of a battery at the beginning of the driving cycle:[6] 
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The optimal parameters, φ0(k), φ1(k),  φ2(k), λ0 and the Kp 

and Ki are obtained by the machine learning algorithm 

described in the next subsection. 

B. Machine learning of minimizing fuel consumption 

We model the road environment of a driving trip as a 

sequence of different road types such as local, freeway, 

arterial/collector, etc. augmented with different traffic 

congestion levels.  We use the set of 11 standard facility 

specific(FS) drive cycles presented in [10, 11] to represent 

passenger car and light truck operations over a range of 

facilities and congestion levels in urban areas. The 11 FS 

drive cycles are divided into four categories, freeway, 

freeway ramp, arterial, and local.  The two categories, 

freeway and arterial are further divided into subcategories 

based on a qualitative measure called level of service (LOS) 

that describes operational conditions within a traffic stream 

based on speed and travel time, freedom to maneuver, traffic 

interruptions, comfort, and convenience [10].  For the 

convenience of description we label the 11 classes of 

roadway types and congestion level as R[1], …., R[11].  

Table I shows the most recent definition of these road 

types[10] along with the labels we assigned. 

We formulate the problem of optimal vehicle power 

management as follows.  For a drive cycle DC(t), t ∈[0, te), 

where te is the ending time of the drive cycle, at any given 

time t, the vehicle is on one of the 11 road types and traffic 

congestion levels, R[i], i = 1, …, 11, and the optimal power 

settings for R[i] should be applied to the vehicle power 

system during time interval [t, t+ t∆ ).   

Figure 2 shows the two major machine learning processes: 

training a neural network to predict road types and traffic 

congestion levels, and machine learning optimal power 

settings for all 11 FS drive cycles. 

The algorithm for the machine learning of optimal 

parameters has the following computational steps: 

Step 1. For each FS drive cycle, R[i], i = 1, …, 11, use the 

selected vehicle model to run the simulation program  to 

generate step-by-step system state data: Pd(k), Pl(k), 

ω(k)(engine speed), 
 
k=1, … , N.  

Step 2. From the simulation results, generate a fuel rate 

matrix F_R(Ps(k), k| ω(k), Pd(k), Pl(k)), where k is the 

discretized time step, Ps(k) is the charge and discharge power 

within the system constraints[6] at time k for the given 

engine speed, ω(k), required drivetrain power Pd(k), and the 

electric load power Pl(k).   

Step 3. At each time step k, the k
th
 column of matrix F_R( *, 

k)  is represented as a convex quadratic cost function of Ps.  

By using a regression method, we obtain coefficients 

)(2 kϕ , )(1 kϕ  and )(0 kϕ , such that 

)()()()()( 01

2

2 kkPkkPk ss ϕϕϕ ++  ≈  F_R( *, k) with 

the best fit.   

Step 4  From 
i

2
~ϕ  and

i

1
~ϕ , the average values of the 

coefficients of, φ1(k) and φ2(k), we calculate the 
i

pK  and 

i

IK  using the following formulas[6] for the FS drive cycle 

R[i].  
i

pK = 
3
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ii

12

~/10*3.3*~ 4 ϕϕ −
. 

We applied the above machine learning algorithm to the 

11 FS drive cycles and the results are shown in Table II, 

which is used in online control as the knowledge base by 

IPC. 

We developed a multi-layered, multi-class neural network, 

NN_RT&TC, for the prediction of the 11 road types and 

traffic congestion levels.  The training data are obtained by 

segmenting and labeling all 11 drive cycles provided by [12].  

For a window size, w∆ , time step, t∆ , and a given drive 

cycle DC(t) (0 ≤ t ≤ te), we extract a feature vector  x  from 

a segment DC[t- w∆ , t], and NN_RT&TC takes x  and 

predicts the road type and congestion level during the time 

interval [t, t+ t∆ ). 

Based on an in depth study on the neural network 

learning[13], the effective window size, time step and feature 

vector are found as follows: w∆  = 150 seconds, t∆ =3,  a 

vector of the 14 features.  The detail of the neural learning 

and prediction can be found in [13].   

III. ONLINE INTELLIGENT POWER CONTROL AND EXPERIMENTS 

The neural network, NN_RT&TC, and the intelligent 

power controller, IPC, have been fully implemented in the 

PSAT simulation environment for online vehicle power 

control. 

 



 

 

 

Table II. Optimal parameter settings generated by the machine 

learning algorithm for 11 standard FS drive cycles. 

Avg of Quadratic 

Cost Function 

Coefficients PI Controller 

coefficient 

Standard 

FS drive 

cycles 

   2
~ϕ   1

~ϕ  

  

lambda 

  

λ  
KP KI 

Freeway 

LOS A 
0.0795 1.8602 1.4948 3.18e

-4
 1.59e

-7
 

Freeway 

LOS B 
0.0793 1.8520 1.1201 3.17e

-4
 1.59e

-7
 

Freeway 

LOS C 
0.0852 1.8721 1.1801 3.41e

-4
 1.70e

-7
 

Freeway 

LOS D 
0.0796 1.8594 1.1203 3.18e

-4
 1.59e

-7
 

Freeway 

LOS E 
0.0924 1.9994 1.9447 3.70e

-4
 1.85e

-7
 

Freeway 

LOS F 
0.1243 2.2200 2.3371 4.97e

-4
 2.49e

-7
 

Freeway 

Ramp 
0.1204 2.3206 2.1549 4.82e

-4
 2.41e

-7
 

Arterial 

LOS A_B 
0.0752 2.1012 2.1657 3.01e

-4
 1.50e

-7
 

Arterial 

LOS C_D 
0.0771 2.1728 2.1558 3.08e

-4
 1.54e

-7
 

Arterial 

LOS E_F 
0.0488 2.1363 2.2030 1.95e-4 9.77e-8 

Local 

Roadway 
0.0561 2.1045 2.2027 2.24e-4 1.12e-7 

 

The computational steps of IPC are as follows: 

Step 1. For a drive cycle DC[t], if t < w∆ , use the startup 

setting points, otherwise go to Step 2. 

Step 2. Call NN_RT&TC to predict the FS road type and 

traffic congestion level based on  the vehicle speed history 

during time interval, [t- w∆ , t).  Let the output from 

NN_RT&TC be R[r]. 

Step 3. Retrieve from the knowledge base the optimal 

parameters,  for FS road class R[r], 
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p

rrr KK ,,,, 21 λφφ . 

Step4. Get vehicle state data at current time t, Pd(t), Pl(t),ω(t) 

and the SOC value at the last time step, SOC(t-1). 

Step5. Calculate the battery energy level,  

              Es(t-1) = SOC(t-1) * Battery_Capacity 

Step6. Calculate Fuel rate F_R (Ps(t), t) at time,t, 

  F_R (Ps(t), t| Pd(t), Pl(t), ω(t)) , where 

)max(_)()min(_ tPtPtP sss ≤≤  

Step 7. Calculate  
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where λ0 is the λ value of the initial FS road class in this 

drive cycle. 

Step 8. Calculate :  
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o
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              ,where )max(_)()min(_ tPtPtP sss ≤≤ Ps(t) 

          ))(()()( 0
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where effalt _η and effbat _η  are Alternator coefficient and 

Battery coefficient respectively. 

We conducted the experiments on three drive cycles using 

a conventional vehicle model provided by [12]. The vehicle 

model used has a 95KW 1.9L Liter Spark Ignition engine 

[12], 5 gear manual transmission and a 12-14V 1.5 KW 

alternator, and a 66Ah/12V lead acid battery. Experimental 

results for three drive cycles, UDDS, LA92 and UNIF01, are 

shown in Figure 3 and Table III.  The UDDS drive cycle 

represents driving conditions in an urban area with frequent 

stops, the  LA92  drive cycle was constructed of segments of 

actual driving recording in Los Angeles, and the UNIF01 

Cycle, developed for the California Air Resources Board 

[10], is a modified form of the LA92.  For the purpose of 

comparison we have used off-line Dynamic Programming 

(DP) to find the optimal operating points [3, 6]. Since the DP 

algorithm requires the full knowledge of the entire driving 

cycle to optimize the power management strategy, it is not 

applicable to online control. However the results generated 

by DP can be used as a benchmark for the performance of 

power control strategies. In Figure 5, we show the battery 

state of charge (SOC) for three different drive cycles using 

three different vehicle power control algorithms. The red 

curves in the plots show the SOC when DP is used for 

optimal prediction and control (with the knowledge of full 

drive cycle).  The green curves show the SOC generated 

using the existing control strategy in [12]. Finally, the blue 

curves show the results when the IPC prediction and control 

routine is used as described above.  

It can be observed that the SOC curves generated by the 

IPC for all three drive cycles have similar behavior to the 

respective ones generated by the offline DP algorithm.  The 

SOC curves generated by the controller in [12], on the other 

hand, are significantly different from the optimal curves. 

Table III presents the performance comparisons with 

respect to fuel consumption. We use the fuel consumed by 

the simulation vehicle with the conventional power 

management controller in [12] as the baseline for 

comparison. For the UDDS and LA 92 drive cycles, the IPC 

gives almost the identical fuel consumption as the optimal 

(DP) controller.  On the UNIF01 drive cycle, the IPC saved 

2.68% fuel in comparison to the baseline controller in [12]. 

Clearly by combining a prediction of the roadway type and 

congestion level with the proposed intelligent power 

management strategy, we were able to realize a fuel economy 

improvement over the existing conventional vehicle power 

management strategy. 
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(a) SOC compensation during driving cycle UDDS 
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(b) SOC compensation during driving cycle UNIF01 
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(c) SOC compensation during driving cycle LA92 

Figure 3. SOC comparison on three driving cycles.  The X axis represents 

time measured in seconds and the vertical represents the SOC measured in 

percentages. 

 

TABLE III 

Performance comparison on fuel consumption 

 Algorithm Fuel 

Consumption 

(gram) 

Final 

SOC (%) 

Fuel 

Consumption 

After SOC 

correction 70% 

(gram) 

Saving 

From 

Baseline 

Baseline 701.1821 65.32% 712.5429  

Off Line 

DP 

(optimal) 

700.2153 70.00% 700.2153 1.7301% 
UDDS 

IPC 700.1142 69.96% 700.2207 1.7293% 

Baseline 1269.225 55.37% 1304.799  

Off Line 

DP 

(optimal) 

1268.153 70.00% 1268.153 2.8085% 
UNIF0

1 

 

IPC 1269.637 69.96% 1269.743 2.6866% 

Baseline 980.191 66.56% 988.63  

Off Line 

DP 

(optimal) 

973.428 70.00% 973.42 1.538% LA92 

IPC 973.3181 69.96% 973.42 1.538% 

 

V. CONCLUSION 

We have presented an intelligent vehicle power controller 

IPC developed for in-vehicle optimal power control based on 

the prediction of 11 different roadway types and traffic 

congestion levels.  

The IPC uses the optimal control parameters generated for 

all 11 standard FS drive cycles and applies the appropriate 

optimal control parameters based on the road type predicted 

by the neural network NN_RT&TC to generate optimal 

power to be charged to or discharged from the battery.  Our 

simulation results on the three drive cycles, UDDS, UNIF01 

and LA 92 drive cycles show that IPC gives much better 

performance over the existing power management strategy in 

a conventional vehicle: for the UDDS and LA 92 drive 

cycles, the IPC gives almost the identical fuel consumption 

as the optimal (DP) controller; for the UNIF01 drive cycle, 

the IPC saved 2.68% fuel in comparison to the baseline 

controller. Currently we are applying the roadway prediction 

knowledge to a hybrid vehicle power management system. 

We anticipate more significant fuel reduction will be 

achieved in hybrid vehicle power systems. 
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